

Current Transducer LA 305-S/SP6

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		300			A	
I_P	Primary current, measuring range		0 ± 800			Α	
R _M	Measuring resistance @		$T_A = 70^{\circ}C \mid T$		T _A =	$T_A = 85^{\circ}C$	
			$\mathbf{R}_{_{\mathrm{M}\;\mathrm{min}}}$	${\bf R}_{\rm M\; max}$	$R_{\rm M min}$	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	with ± 15 V	$@ \pm 300 A_{max}$	0	91	0	86	Ω
		@ ± 500 A max	0	25	0	20	Ω
	with ± 24 V	@ ± 300 A max	15	200	20	195	Ω
		@ $\pm 800 A_{max}$	15	30	20	25	Ω
I _{SN}	Secondary nominal r.m.s. current			75			mΑ
K _N	Conversion ratio			1:	4000		
V _C	Supply voltage (± 5 %)			± 15 24			V
I _C	Current consumption		20(@±15V)+ I _s r			mA	
$\mathbf{V}_{_{\mathrm{b}}}$	R.m.s. rated voltage 1), safe separation			17	50		V
		basic isolation		350	00		V

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.8		%
\mathbf{e}^{L}	Linearity	< 0.1		%
		Typ	Max	
Io	Offset current @ $I_p = 0$, $T_A = 25$ °C		Max ± 0.15	m A
I _{OM}	Residual current ²⁾ @ $\mathbf{I}_p = 0$, after an overla	oad of 3 x I _{PN}	± 0.25	m A m A
I _{OT}	Thermal drift of I _o - 25°C	: + 85°C	$ \pm 0.25 $	
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500)	ns
t _r	Response time ³⁾ @ 90 % of I _{PN}	< 1		μs
di/dt	di/dt accurately followed	> 100)	A/µs
f	Frequency bandwidth (- 3 dB)	DC	100	kHz

General data

T _A T _S	Ambient operating temperature Ambient storage temperature		- 25 + 85 - 40 + 90	°C
\mathbf{R}_{s}°	Secondary coil resistance @	$T_A = 70$ °C	80	Ω
		$T_{A} = 85^{\circ}C$	85	Ω
m	Mass		260	g
	Standards 4)		EN 50155	

 $\underline{\text{Notes}}$: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs
- ⁴⁾ A list of corresponding tests is available.

$I_{DN} = 300 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_D = 0.. \pm 800 \text{ A}$
- $\mathbf{K}_{N} = 1:4000$
- $V_{c} = \pm 15 ... 24 (\pm 5 \%) V$
- Connection to secondary circuit on 3 M4 threaded studs
- Potted
- · Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

021213/4

Dimensions LA 305-S/SP6 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection to secondary Fastening torque
- ± 0.5 mm 2 holes Ø 5.5 mm 2 M5 steel screws 4 Nm or 2.95 Lb. - Ft. 25.5 x 25.5 mm M4 threaded studs 1.2 Nm or .88 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.